Hypermetabolism and Nutritional Support in Sepsis.

Center for Surgical Infection Research and Therapeutics, University of Chicago , Chicago, Illinois.

Surgical infections. 2018;(2):163-167

Abstract

BACKGROUND Surgical metabolism has been a founding field of investigation in surgery without which the boundaries of critical care, trauma, and surgical oncology could not have advanced. Traditionally, understanding the shifts in electrolytes, carbohydrates, fats, and amino acids that could explain the rapidly evolving proteolysis after catabolic stress and tumor growth has been a major focus of research that led to our current approach to maintaining homeostasis over the course of major surgical intervention and injury. METHOD Review of the English-language literature. RESULTS With the emerging field of inflammation and the discovery of cytokines and chemokines, surgical metabolism has taken a second seat in the surgical research arena. Yet central to all patient management after injury is an understanding of how catabolic stress erodes vital organ function and how current approaches can support metabolism through the most physiologically stressful perturbations known to man, for which there is no evolutionary precedent. Although it is well accepted that unabated proteolysis is not a sustainable physiologic state, in the era of modern medicine, precisely how to manipulate the body nutritionally to drive a recovery-directed immune response remains highly debated. This review incorporates multiple lines of inquiry in surgical metabolism, with a particular focus on sepsis. CONCLUSION The changing landscape of previous paradigms in the field is discussed. Finally, how next-generation technology might spark renewed interest in this field among surgical investigators is considered.

Methodological quality

Publication Type : Review

Metadata